

MHRD Scheme on Global Initiative on Academic Network (GIAN)

Internal Combustion Engine Fundamentals and Advances

Overview

The invention and development of the internal combustion (IC) engine in the nineteenth century has had a profound impact on human life. IC engine offers a relatively small, lightweight source for the amount of power it produces. The most common IC engines are the piston-type gasoline and Diesel engines used in most automobiles. Since the invention of IC Engines, the magnitude of developments have been introduced in order to increase its efficiency, improve performance and reducing the exhaust emissions. Advanced combustion concepts such as Homogeneous Charge Compression Ignition (HCCI), Gasoline Direct Injection (GDI) etc. have been introduced and implemented by the manufacturer. The scarcity of petroleum fuels led to the utilization of alternative fuels such as alcohols, biodiesels etc. The introduction of common rail fuel injection system and gasoline direct injection have improved the performance and efficiency significantly. This program is designed to provide extensive knowledge about basics and recent advances about Internal Combustion Engines to students, researchers, and faculty members from reputed institutes. The program comprises theoretical lecture sessions, tutorials, and experimental sessions. Theoretical concepts will be taught and discussed during lecture sessions. Tutorial and lab sessions will include discussions and problem-solving in a quantitative manner. Relevant lecture sessions will be followed by rigorous experimental sessions each day of the program which will provide practical exposure to the participants.

Course Objectives

The primary objectives of the course are as follows:

- i) To introduce the students and researchers with the fundamentals of Internal Combustion Engine by expert lectures. To improve the understanding about the advances in Spark Ignition and Compression Ignition Engines. Experimental exercises and demonstration for Performance Parameter Evaluation
- ii) Explaining about the recent Engine Emission regulations that are being followed in various parts of the world. Demonstration and experimentation for Gravimetric analysis for Emission Measurement
- iii) Demonstration of several experiments to expose the students with various practical aspects about IC Engines such as In-cylinder pressure study, Heat Release Rate, Combustion Phasing, Combustion Duration, Emission Measurements, Particulate Sampling and Characterization etc.
- iv) Exposure and demonstration for various alternative fuels production techniques and its characterization like Transesterification process for Biodiesel Production, Pre-treatment and Fermentation for Ethanol Production from First and Second Generation Organics etc.

Teaching Faculty with allotment of Lectures and Tutorials

- 1. **Prof. Jacek Hunicz (JH):** 6 hrs lectures and 6 hrs tutorials
- 2. Dr Pravesh Chandra Shukla (PCS): 4 hrs lectures and 4 hrs tutorials

Course Details:					
Dates	11-15th December 2023				
Location	The course will be conducted via offline mode at the Indian Institute of Technology				
	Bhilai (IIT Bhilai	lai (IIT Bhilai), Kutelabhata, Durg, (C.G.) 491001 (India)			
Course	11th Dec. 2023	Inauguration: 9:00 AM-9:30 am			
Schedule		Lecture 1 (10:00-11:00 hrs): 1 hrs: JH			
		Fundamentals of Internal Combustion engines, Different types of			
		reciprocating internal combustion engines (ICE), Their Typical			
		Design Features, Engine Performance Parameters, Indicated			
		Thermal Efficiency, Brake Thermal Efficiency, Mean Effective			
		Pressure,			
		Lecture 2 (11:30-12:30 hrs): 1 hrs : JH			
		Engine Heat Transfer And its Relation to Thermal Loading of			
		Engine Components and Cooling, Thermodynamics of Combustion,			
		Combustion Stoichiometry, Application of First Law of			
		Thermodynamicsto Combustion			
		Tutorial 1 (14:30-16:30 hrs): 2 hrs: JH			
		Lab Sessions and Problems Related Engine efficiency and Power			
		output, Frictional Losses, Calculations of IP and BP, Problems			
		based on Otto and Diesel Cycles, Thermochemistry related			
		Problems, Lean and Rich Mixture			
	12th Dec. 2023	Lecture 3 (10:00-11:00 hrs): 1 hrs: JH			
		Combustion in Spark Ignition Engines, Pre-mixed Charge			
		Combustion, Laminar and Turbulent Pre-mixed Flames,			
		Flammability Limits, SI Engine combustion Conceptual Models,			
		Flame Development, Flame Propogation, Flame Termination,			
		Thermodynamic Analysis of Combustion, Single and Two Zone			
		Combustion Model, Knocking in SI Combustion			
		Lecture 4 (11:30-12:30 hrs): 1 hrs: JH			
		Combustion in Compression Ignition Engines, Fuel Spray and			
		Spray Structure, Fuel Atomization and Droplet Distribution, CI			
		Engine Combustion Conceptual Models, Ignition Delay, Premixed			
		Combustion, Mixing Controlled Combustion (Diffusion			
		Combustion), Thermodynamic Analysis for Rate of Heat Release			
		Tutorial 2 (14:30-16:30 hrs): 2 hrs: JH			
		Lab Sessions/Problems related to Combustion Study, Incylinder			
		Pressure Measurement, Heat Release Rate calculation, Calculations			
		or Ignition Delay, Compusition Duration, Compusition Phasing, Peak			
	12th Dec. 2022	Lootune 5 (10:00 11:00 hug): 1 hug: DCS			
	13th Dec. 2023	Lecture 5 (10:00-11:00 nrs): 1 nrs: PCS			
		Formation of Carbon Monovide, New Formation, Thermal New			
		Fuel Borne Nov. Promp Nov. Unburned Hydrocorbon Emissions in			
		Fuel Bonne Nox, Fromp Nox, Onburned Hydrocarbon Emissions in			
		I acture 6 (11.30 12.30 hrs): 1 hrs: PCS			
		Engine Particulate Basics Composition and Streuture of			
		narticulate Mechanism of Particulates Diesel NOx-Soot Trade-off			
		Particle Number Emissions Emission Regulations Effect of			
		Various Fuel Introduction/Injection Strategies on Emissions in SI			
		and CI Engines.			
		Tutorial 3 (14:30-16:30 hrs): 2 hrs: PCS			
		Lab Sessions for Emission Studies, Measurement and Analysis			
		of Gaseous Emission Components for SI and CI Engines,			
		Gravimetric Analysis, Particulate Sampling and its Physico-			
		chemical Analysis			
	14th Dec. 2023 Lecture 7 (10:00-11:00 hrs): 1 hrs: JH				
		Advances in Internal Combustion Engines, Homogeneous			
		Charge Compression Ignition (HCCI), Reactivity Controlled			
		Compression Ignition (RCCI), Premixed Charge Compression			
		Ignition (PCCI), Gasoline Direct Injection (GDI) Engines, Fuel			

		Injection Strategies, Engine Mapping,	Electronic Control Unit		
	(ECU)				
		Emission Control Technologies, Active and Passive Control			
		Techniques, Optimization of Engine Design Parameters. Exhaust			
		Gas Recirculation, Variable Valve Actu	ation. Fuel Injection		
		Variation Aftertreatment Devices, Thr	ee-way Catalytic Converter.		
		Oxidation Catalyst, Diesel Particulate	Filter, Selective Catalytic		
		Reduction			
		Tutorial 4 (14:30-16:30 hrs): 2 hrs: J	H		
		Demontration of Some of the Exha	ust Aftertreatment		
		Techniques/Devices, Discussion/Proble	ems related to Emission		
	151 D 2022	Control Technique	<u> </u>		
	15th Dec. 2023	Lecture 9 (10:00-11:00 hrs): 1 hrs: P	CS		
	Alternative Fuel for SI Engines, Alternative Fuels for Cl Engines, Gasaous Eugls, Hydrogen, Mathana, Compressed Nature				
		Engines, Gaseous rueis, Hydrogen, Methane, Compressed Natural Gas (CNG) Liquified Petroleum Gas (LPG) Biogas Producer Gas			
		Dimethyl Ether (DME)			
	Lecture 10 (11:30-12:30 hrs): 1 hrs: PCS Liquid Fuels for IC Engines, Methanol and Ethanol, Straight Vegetable Oil (SVO), Hydrotreated Vegetable Oil (HVO),				
		Biodiesels derived from various feedstocks, First and Second			
	Generation Alternative Fuels, Transestirification for Biodiesel				
	Production Tutovial 5 (14:20, 15:20 have): 1 have DCS				
	Iutorial 5 (14:50-15:50 hrs): 1 hrs: PCS I ab Visit/Session to Biodiesal Droduction Dlant*				
	Lab VISII/Session to Biodiesel Production Plant [*] , Transesterification, Eucl Characterization, Demostration of Various				
		Fuel Characterization Equipment Bor	b Calorimeter		
		Vicositymeter, Densitymeter, Flash Poi	int Apparatus, Cloud and		
		Pour Point etc.	11 7		
		Evaluation and Feedback (15:30-16:	30 hrs): 1 hrs: JH and PCS		
	Evaluation of Learning Outcomes (Examination/Test, Feedback)				
	and Certificate distribution				
Who should attend?	• Anyone with a degree in Mechanical, Production, Environment or relevant branches of				
attenu.	Engineering and	l Science. Vala (D. Taak /D. Eng. /D. Sa. /M. Sa. /M.Taak	(Dh.D.) and familty manh and		
	• Student at all levels (B.Tech./B.Eng./B.Sc./M.Sc./MTech./Ph.D.) and faculty members/				
	 Engineers, Scientists and Professionals working in companies, industries and R&D institutions. 				
Course Fee	All prospective p	participants need to do web registrati	on for the course on GIAN		
	(https://gian.iitkgp	ac.in/GREGN/index) portal by making	g a one-time non-refundable		
	payment of Rs. 500/				
	After the mandatory web registration, only the shortlisted participants will be informed by				
	email to register fo	or the course by making full payment of t	he course registration fee either		
	by NEFT (Account	t holder name: Director, IIT Bhilai, Acc	ount No. 7793000100014077;		
	IFSC Code: PUNE	30957100; Bank: PNB, Sardar Vallabh bl	hai Patel Market) or by sending		
	a demand draft in	n Iavor of "Director, III Bhilai" paya	pie at Punjab National Bank,		
	Dumartarai, Kaipur, Chhattisgarh before the last date of registration. Please send an email				
	Last Date of Regi	stration for the course: 20th November	er 2023		
	The participation f	fees for attending the course is as follows	5:		
	Participants from abroad: US\$ 100 + 18% GST				
	Industry/ Research Organizations: Rs. 2000/- including GST				
	Academic Institutions (Faculty members): Rs. 1000/- including GST				
	Academic Institutions (Students/Research scholars): Rs. 500/- including GST				
	Limited accommodation may be provided subject to room availability. The charges for the accommodation may be enduired from course coordination separately				

International Expert:

<u> Prof. Jacek Hunicz</u>

Prof. Jacek Hunicz (PhD, DSc.) is an associate professor and head of Powertrains Laboratory at the Lublin University of Technology, Poland. His track record includes experimental engine research and renewable low-carbon fuels. In the area of combustion research, his studies are centered on the control strategies for low-temperature combustion in HCCI engines, including the NVO fuel reforming. With over 23 years of professional expertise in combustion engines and powertrain development, prof Hunicz is a grant holder of several relevant nationwide projects funded by the Ministry of

Science and Higher Education and National Science Centre. He is a member of several international research groups. He is also an innovation consultant for domestic off-road vehicle and bus manufacturer Ursus and technical advisor to the Polish military industry in the field of powertrain testing. Since 2018, he has been a board member of the Polish Scientific Society for Combustion Engines.

Host Faculty:

Dr. Pravesh Chandra Shukla

Dr. Pravesh Chandra Shukla is Assistant Professor in the Department of Mechanical Engineering at Indian Institute of Technology Bhilai. Dr. Shukla received his PhD from Indian Institute of Technology Kanpur. He has also worked as Senior Research Associate (SRA, Pool Scientist) at IIT Kanpur. Prior to joining IIT Bhilai, he was a post-doctoral researcher in the Division of Combustion Engines, Department of Energy Sciences, Lund University, Sweden. He briefly worked in Ecole Centrale de Nantes, France in the field of dual fuel combustion. He is recipient of Young Scientist Award from the International Society for Energy, Environment and Sustainability. Dr. Shukla mainly works in the field

of Internal Combustion Engines and Alternative fuels for transportation. He worked on the development of additives for high compression ratio heavy duty engines fueled with alcohol. He is involved in investigating the emission characteristics for alternative fuels like biodiesel, HVO and alcohols for conventional and advanced heavy duty compression ignition engines. Till now, he has published more than 35 technical articles in international journals, conference proceedings and books.

Contact:

Course Coordinator	Local GIAN Coordinator
Dr. Pravesh Chandra Shukla	Dr. Sanjib Banerjee
Assistant Professor	Associate Professor
Department of Mechanical Engineering	Department of Chemistry
Indian Institute of Technology Bhilai	Indian Institute of Technology Bhilai
Kutelabhata, Durg (C.G.) 491001 INDIA	Kutelabhata, Durg (C.G.) 491001 INDIA
Email: pravesh@iitbhilai.ac.in	Email: sanjib,banerjee@iitbhilai.ac.in
Mob: +91-8827065836	