Matrix Classes in Solving the Linear Complementarity Problem

(ONLINE)

Overview:

Optimization is an important scientific tool, being widely used in engineering, automatic control systems, electronic designs, network designs and mathematical finance. In particular, optimal design problems arise frequently in civil, mechanical and aerospace engineering. The Linear Complementarity Problem (LCP) represents an important model for such problems in mathematical optimization and finds additional use in game theory and models of the economy, among many other scientific fields.

Given a real matrix M and a real vector q, the Linear Complementarity Problem LCP(q,M) seeks to find a nonnegative vector z such that w = M z + q is nonnegative and is perpendicular to z. Much of the theory of the LCP and its solutions is intimately linked, in various ways, to specific matrix classes. The course aims to introduce various classes of matrices M for which LCP(q,M) admits a solution with various properties for certain real vector q. Semipositive, semimonotone and M- matrices are among such classes of matrices.

The proposed compact course emphasizes the various properties of semipositive matrices and their semipositive cones, semimonotone and central matrices, as well as their applications. The lectures comprise an overview of relevant theory, a study of the relations among matrix classes associated with LCP, and an examination of computational challenges that arise for these classes of matrices. Moreover, the course will include an exposition of challenges and open problems in LCP, promoting the pursuit of future research collaborations by the participants.

Objectives of the	1. Introduce semipositive matrices, semimonotone matrices and related classes, as well as their				
Objectives of the	various geometric and algebraic properties.				
Program	2. Develop, explore and exploit the relations among these matrix classes in optimization.				
	3. Exhibit recent trends and propose future work in the field.				
	15 hours Lectures and 4 hours Tutorials. December 12 to December 16, 2022 (Online mode)				
Module	Number of Participant limited to seventy				
Who can attand	• Students at all levels (BTech/MSc/MTech/PhD).				
who can attenu	• Engineers, researchers and faculty from academic and technical institutions				
Course Fees	The participation fees for taking the course are as follows:Participants from abroad: US \$100				
	Industry/ Research Organizations: INR 5000				
	Academic Institutions: INR 2000 (Faculty/Post doc), INR 1000 (Ph.D/MTech students)				
	INR 500 (M.Sc/BTech).				
	The above fee includes all instructional materials, tutorials and assignments.				
Mode of	Step-1: One time Web (Portal) Registration: All prospective participants need to do web registration on CLAN (https://gipa.iit/cp.go.in/CPECN/index) partal by malting anatime non rationable payment of Pg. 500/				
Registration	(<u>nups://gian.nikgp.ac.m/GREGN/index</u>) portal by making onclime non-relundable payment of Rs. 500/-,				
registration					
	Step-2: Course Registration (Through GIAN Portal)				
	Step_3 . After GIAN Registration the Course fee is to be denosited online in the institute account. The program				
	fee covers the course materials and access to all the sessions. Participants should pay course fee through online				
	mode (NEFT/IMPS) and fill up transaction ID/details in the google form with the link and the account details				
	given below.				
	https://forms.gle/A11fWTsemkKEVnP9s5				
	https://formis.glo/AO1w1semkkL/viii/955				
	The last date for registration:30-11-2022, Intimation of selection: 05-12-2022, Confirmation of				
	participation: 07-12-2022, Online link will shared: 10-12-2022				
Account Detail for	Bank Name : UCO Bank				
Payment of	Account Name : NIT MEGHALAYA R AND D ACCOUNT				
Course Fee	Account Number : 23730110010280				
	IFSC Code : UCBA0002373				
	MICR No : 793028003				

Tentative Schedule (Online)

Time	IST: 8:00 AM to 8:45 AM	IST: 9:00 AM to 9:45 AM	IST: 10:00 AM to 10:45 AM	IST: 11:00 PM to 11:45 PM
Dates	PT: 8:30 PM to 9:15 PM (-1 Day)	PT: 9:30 PM to 10:15 PM (-1 Day)	PT: 10:30 PM to 10:45 PM (-1 Day)	PT: 11 PM to 11:45 PM (-1 Day)
12.12.2022 (Monday)	Session 1 Topic: Introduction to Quadratic Programming, Game Theory and their relation to LCP (MT)	Session 2 Topic: Matrix tools and transformations (MT)	Session 3 Topic: Existence and Uniqueness of Solutions of LCP (MS)	Session 4 Topic: Tutorial/Discussion/ Homework (MS)
13.12.2022 (Tuesday)	Session 5 Topic: The hierarchy of matrix positivity classes (MT)	Session 6 Topic: Matrix semipositivity: algebraic and geometric properties (MT)	Session 7 Topic: LCP and matrix classes (MS)	Session 8 Topic: Tutorial/Discussion/ Homework (MS)
14.12.2022 (Wednesday)	<i>Session 9</i> Topic : Overview of methods to solve the LCP (MT)	Session 10 Topic: Focus on P- matrices and their subclasses (MT)	Session 11 Topic: Cones and their spectral properties (MS)	Session 12 Topic: Sign Pattern of semipositive matrices (MS)
15.12.2022 (Thursday)	Session 13 Topic: Semimonotone and central matrices (MT)	Session 14 Topic: Recent advances in theory and computations (MT)	Session 15 Topic: M-matrices and LCP-I (KCS)	Session 16 Topic: Tutorial/Discussion/ Homework (KCS)
16.12.2022 (Friday)	Session 17 Topic: Challenges, ideas and open problems on LCP (MT)	Session 18 Topic: M-matrices and LCP-II (KCS)	Session 19 Topic: Tutorial/Discussion/ Homework (KCS)	Examination

- MT : Prof. Michael J. Tsatsomeros
- KCS : Prof. K.C. Sivakumar
- MS : Dr. Manideepa Saha

Please send an email to course coordinator in case of any question: manideepa.saha@nitm.ac.in

Foreign Faculty

Prof. Michael Tsatsomeros is a professor in the department of Mathematics & Statistics, Washington State University, Pullman, USA. He received his Ph.D degree in Mathematics, from University of Connecticut, USA in 1990. His research interests lie in Linear Algebra and Matrix Theory, especially the theory of nonnegative matrices and their generalizations. Particular interests include the numerical range, graphs and patterns associated with matrices, numerical linear algebra, applications to dynamical systems and control theory. Prof. Tsatsomeros has published over 65 research papers in these and related areas in reputed international journals. He is also recipient of more than 10 research/equipment grant from various agencies over the world, which include SPARC project, Govt. of India. Currently he is Co-Editor-In-Chief of Electronic Journal of Linear Algebra and an Associate Editor of Linear Algebra and its Application. Additionally, he was special editor of special issues of Electronic Journal of Linear Algebra and Linear Algebra and its Application.

Guest Faculty

Prof. K. C. Sivakumar is a professor in the department of Mathematics, Indian Institute of Technology Madras, India. His area of research lie on infinite Linear Programming, Generalized Inverses of Operators over Hilbert Spaces, Nonnegative Generalized Inverses, Generalizations of Matrix Monotonicity, Linear Complementarity Problems, Generalized Inverses of Matrices over Indefinite Inner Product Spaces. He published many research articles in reputed journals and many research grants from various agencies including a joint SPARC proposal with Prof. Michael Tsatsomeros . He also refereed in many reputed journals including *Electronic Journal of Linear Algebra, Linear Algebra and its Application, Linear and Multilinear Algebra , Journal of Computational and Applied Mathematics etc.*

Host Faculty

Dr. Manideepa Saha is an assistant professor in the department of Mathematics, National Institute of Technology Meghalaya, India. Her primary research interests are related to Linear Algebra and matrix theory

Course- Coordinator

Dr. Manideepa saha

Phone no. 9485177032 Email: manideepa.saha@nitm.ac.in

LINK http:// www.gian.iitkgp.ac.in/ GREGN/index