Hydrodynamic Stability and Dynamo Theory

9 – 20th December 2016

Overview

The topics of the course, related to recent astrophysical and geophysical problems, are also very attractive to applied mathematicians. Sophisticated mathematical approaches applying wide spectra of numerical as well as analytic and asymptotic methods are necessary for successful and effective solutions of those physical problems. The first goal of the course is to motivate mathematicians to solve complex physical problems. Therefore, the course indicates an attractiveness and practical usefulness of topics related to the magnetic fields generation of cosmic bodies, in particular of the Earth and Sun. Understanding and the ability to predict the time behaviour of the last two fields has also enormous practical significance, and it is not yet solved. The second goal is to show how various branches of mathematics are indispensable in solving the problems of Convection and Dynamo Theory in astro- and geophysics. The 3rd goal is to introduce the basic physical background for the topics with emphasis on mathematical expression of this physics, i.e. to underline the correspondence between the physics and mathematics of the topics.

The foundations of Magnetohydrodynamics combined with Rotating Convection issues pertaining to two (also historically) important branches of Dynamo Theory, i.e. (1) Hydrodynamic Stability of rotating fluids permeated by magnetic field (Rotating Magnetoconvection) and (2) Kinematic Dynamos, which finally make the full Dynamo Theory tractable. All this story is presented by mathematical approaches with convenient approximations based on physical understanding of details in Dynamo mechanisms.

Modules	 Foundations of Magnetohydrodynamics (MHD). Dynamics of Rotating Fluids: Rotating Magnetoconvection (RMC), Linear and nonlinear Models of RMC, Waves In Rotating MHD Systems, Numerical modeling in RMC Dynamo Theory: Numerical Simulations of Dynamos, Natural Dynamos. Course Duration: 10 days (9 – 20th December 2016, excluding Sundays 11th and 18th Dec. 2016) Number of participants for the course will be limited to fifty (50).
You Should Attend If	 you are a mathematician/ physicist/ geophysicist/astrophysicist/ engineer/research scientist. you are a undergraduate/postgraduate student / researcher / faculty or scientist from technical and academic institutions / from industry interested in learning to do research on MHD, RMC and dynamo theory. you keen to learn how to apply mathematical methods in astro- and geophysical models.
Fees	 Faculty (Internal and external) and Scientists: Rs.4000/ Participants from Research Organizations / Industry / Consultancy firms: Rs.8000/ Students and Research Scholars: Without award of grade : Rs.1000/- ; With award of grade:Rs.2000/ Participants from abroad: Students: USD \$100; Other participants from abroad: USD \$200.
	The above fee includes all instructional materials, computer use for tutorials and assignments, laboratory, free internet facility, working lunch with mid-sessions tea & snacks. The participants from industry/research organizations/academic institutions will be provided with twin sharing accommodation on payment basis in the Institute Visitors Block subject to the availability. Students will be provided accommodation in Student Hostels on payment basis. Travelling allowance will not be provided. All course registrations will processed via the national GIAN portal (gian.iitkgp.ac.in), where a Rs.500/- one-time fee is payable in addition to the above amount. Please send an email to course coordinator in case of any questions: <u>hprani@nitw.ac.in</u>

The course will benefit the students of undergraduate and postgraduate levels, and academicians with background of mathematics and physics to acquire a new experience to apply mathematical methods in attractive physical problems.

Course Schedule

Day/Topic	Time	L/T		Торіс
Day 1	9:30-11am	L1	I	ntroduction and basic equations of MHD
Foundations of	11.15-12.30pm	1 L2	r	Nondimensional numbers, e.g. magnetic Revnolds number(Rm); induction
Magneto-			e	equation analysis, case Rm << 1 with negligible induction effect
hydrodynamics 14:00 -15pm		L3	F	Frozen flux approximation, case Rm >> 1
(MHD)	15.15 -17pm	T-1	ļ	Assignments of Day1 lecture
Day 2	0.20.11.0m		6	Significant affasts of Cavialis forms in astro physical badies and in the Farthle
Day 2	9.50-11411	L4		significant effects of conolis force in astro-physical bodies and in the Earth's
Dynamics of	11 15-12 30pm	1 15		Boundary layers effects
Rotating Fluids	Botating Eluids			Seastrophic and quasigeostrophic approximation
15 15 -17pr		T-2		Duiz on Day 1 lecture (10 marks): Assignments of Day2 lecture
15.15 -17 pm		12	`	
Day 3	9.30-11 am	L7		ntroduction to Rotating Magnetoconvection
Rotating Magneto	- 11.15-12.30pm	1 L8	E	Basic equations for the RMC and nondimensional numbers;
convection	convection 14.00-15pm		1	Magnetostrophic and quasigeostrophic approximation
(RIVIC)	15.15-17 pm	T-3	(Quiz on Day 2 lecture(10 marks); Assignments of Day3 lecture
Day 4	9.30-11am	L10	Geo	ometry simplifications: the RMC in planar layer, the Cartesian box,
Linear Models	11.15-12.30pm	L11	Bus	sse cylindrical annulus;
of the RMC	14:00 -15pm	L12	var	ious complexities, e.g. anisotropic diffusive coefficients
	15.15-17 pm	T-4	Qu	iz on Day 3 lecture(10 marks); Assignments of Day4 lecture
Day 5	9:30-12:30pm	L13, L	14	Weakly nonlinear analysis in various approximations;
Nonlinear Models of the	14.00-15pm	L15		The Nusselt number computation
RMC	15.15-17pm	T-5		Quiz on Day 4 lecture(10 marks)
Kivic				Discussion on Assignments given on Day1-4 lectures (20 marks)
			_	
Day 6	9:30-11am	L16	Dyr	namics of various waves
Wayas In	11.15-12.30pm	L17	DIS	persion equations of inertial, Alfven, Lennert (MC), MAC waves (their mostly
Rotating MHD	14.00 1Epm	110	dSy	mplotic dridiysis)
Systems	14.00-13pm	T 6	*M	licro Procontation (Emts duration cach) on Day 1 5 loctures (10marks)
	13.13-186	1-0	Qui	iz on Day 5 lecture (10 marks); Assignments of Day6 lecture
Day 7	0.20 11.000	110	Inte	reduction to Numerical methods and approaches (NNAA)
Day /	9:30-11dm	120		A due to the (complex) cohorical shell geometry
Numerical	11.15-12.30pm	L20		IA due to the (complex) spherical shell geometry
modelling in	14.00-13pm	L21 T-7	* 1.11	licro Presentation (5mts duration each) on Day 1-5 lectures (10marks):
RMC	13.13 17 pm	. ,	Qui	iz on Day 6 lecture(10 marks); Assignments of Day 7 lecture
	0.00.44		14	
Day 8	9:30-11am	L22	KIN	ematic dynamos, toroidal and poloidal fields
Dynamo Theory	11.15-12.50pm	L25	Cor	an field dynamo theory, alpha and offiega effects
Dynamo meory	14.00-15pm	L24 то		iz on Day 7 locture(10 marks): Assignments of Day? locture
	13.13-17pm	1-0	Qu	2 of Day 7 lecture (10 marks), Assignments of Days lecture
Day 9	9:30-11am	L25	Nu	merical methods, pseudo-spectral methods
Numerical	11.15-12.30pm	L26	LES	models, the DNS approaches
Simulations Of	14.00-15pm	L27	Pla	netary dynamos scaling laws
Dynamos	15.15-17pm	T-9	Qu	iz on Day 8 lecture(10 marks); Assignments of Day9 lecture
Day 10	9·30-11am	128	Inte	ernal structure and magnetic fields of cosmic objects (planets, stars, galaxies)
54y 10	11 15-12 30nm	129	Nat	tural Dynamos (the Geodynamo: planetary Solar, stellar and galactic
Natural Dynamos	11.13 12.30pm	225	dvr	namos)
,	14.00-15pm	L30	Cor	nclusion on Natural Dynamos
	15.15-18pm	T10	Qu	iz on Day 9 lecture(10 marks); Minisymposium (20marks)
L		-		

*Depends on the number of participants. L/T- Lecture/Tutorial

Evaluation and weightage of scores: Quiz starting from Day 2 – day 10= 90marks;

Micro Presentation (5mts duration each) on Day 1-5 lectures (5marks); Minisymposium (5marks)

The Faculty

Prof. Brestensky is from Faculty of Maths, Physics and Informatics (FMPHI) in Comenius University (CU), Bratislava, Slovakia. He contributed his research knowledge in different departments of CU such as Astronomy, Physics of the Earth and Meteorology, General Physics, Geomagnetism and Magnetohydrodynamics, and Natural Sciences. His research interests include Geophysics, Geophysical Flu id Dynamics, Planetary Magnetic Fields, Rotating Magnetoconvection, Cosmic Magnetohydrodynamics, Solar Physics, Physics of everyday life and Applied Mathematics. He contributed his vast knowledge in the prestigious Scientific committees in different positions. He has been invited by the different prestigious universities, to name a few, Cambridge University, University of Hyderabad and NIT Warangal. He published his research work in high impact factor SCI journals which has a large number of citations.

Dr. HP Rani, Assistant Professor of Mathematics from NIT-Warangal has vast experience as an academician and a researcher by working in prestigious National Taiwan University, Taiwan and Kyung Hee University, South Korea. She has introduced a new concept of boundary layer flow visualisation through heatlines and masslines concept. Her work in flow assisted corrosion problems has gained currency in the nuclear industry. The detailed analysis of microcirculatory blood flow in hepatic lobule has got much appreciation from the medical community. She published 37 research articles in reputed International Journals, 19 research articles in the international proceedings and visited many countries for her research presentation as well as an Invited Speaker. Her area of interest includes Computational Fluid Dynamics, Heat and Mass Transfer, Biomechanics, MHD, geodynamo and corrosion problems.

Course Co-ordinator

Dr. H.P. Rani Phone: 9908143247 E-mail: hprani@nitw.ac.in

http://www.gian.iitkgp.ac.in/GREGN