STEPS FOR REGISTRATION

Step 1: GIAN web Portal Registration: Register in the GIAN portal by visiting the following link http://www.gian.iitkgp.ac.in/GREGN/index by paying INR 500/- online. Once registered you don’t have to pay any further registration fees for any GIAN course in the future. Please note that the Course fee is separate.

Step 2: Login to the GIAN portal with the registered User ID and Password. Select the course titled “Tropical Meteorology: Asian-Australian Monsoon, Tropical Cyclones and Climate Change” from the list and click the “Save” option. Confirm your registration by clicking the suitable option.

Step 3: Course Fee Remittance: The applicable fee may be paid via Electronic Clearing Service/RTGS/Demand Draft in the name of “IITD CEP ACCOUNT”. Following are the bank details:

- Bank Account Number: 36819334799
- Bank Address: State Bank of India, IIT Delhi, Hauz Khas, New Delhi – 110016, India
- MICR Code: 110002156
- IFSC Code: SBIN0001077
- SWIFT Code: SBININBB547
- IITD PAN Number: AAATI0393L
- Account Type: Saving

If the registration fees is paid through Demand Draft, please send it to the Course Coordinator at the following address:

Prof. Sandeep Sahany
Centre for Atmospheric Sciences
Room No. 413, Block VI
Indian Institute of Technology Delhi
New Delhi – 110016, INDIA

Last Date of Registration: January 20, 2019

Course Registration Fees:
Research Scholars/Students: INR 7,500
Faculty: INR 15,000
Working Professionals: INR 20,000
Participants from Abroad: USD 400

Students may be provided hostel accommodation, and faculty and working professionals may be provided with faculty guest house accommodation, depending on the availability, on payment basis.

---

Tropical Meteorology: Asian-Australian Monsoon, Tropical Cyclones and Climate Change

TWO WEEK GIAN COURSE
18th February – 1st March, 2019

INTERNATIONAL FACULTY
Prof. John Leonard McBride,
Emeritus Fellow, Centre for Australian Weather and Climate Research, Bureau of Meteorology, Melbourne, Australia

COURSE COORDINATOR
Prof. Sandeep Sahany,
Centre for Atmospheric Sciences
Indian Institute of Technology Delhi
New Delhi – 110016, India

HOST INSTITUTE
INDIAN INSTITUTE OF TECHNOLOGY DELHI,
NEW DELHI – 110016, INDIA
In today’s world of changes all around, one of the underpinnings that spans and connects many of the major changes that we see around us is the changing climate. Food, water, and energy security are the primary concerns of the central and state governments across the world, and the case is no different in India. Given the impact of climate change on food (ranging from agricultural production to fisheries), water (ranging from droughts and floods through sea level rise), and energy (availability of hydro, solar, wind and tidal energy), it is essential for us to have trained manpower that understands the basics as well as advanced concepts of tropical meteorology and how things are expected to change under global warming.

The Indian summer monsoon (ISM) and its likely change under global warming has been one of the most important topics of academic and research interest for the climate science community in India. Although there is significant research going on in this field, a holistic view of the Asian-Australian monsoon system is essential. A better understanding of the monsoon system is necessary for its adequate representation in the numerical models used for its prediction/projection ranging from seasonal through decadal timescales. Along with an augmented understanding of ISM, it is also essential to understand the physical mechanisms of some of the high impact weather events such as tropical cyclones for both understanding as well as forecasting/projecting them using numerical models. Countries such as Australia have made major advances in their preparedness for climate change and high impact weather events such as tropical cyclones and heat waves. As emphasized by the Intergovernmental Panel on Climate Change (IPCC) in their latest Assessment Report 5 (AR5), a significant fraction of the Asian population including India is vulnerable to climate change, and hence, a better understanding of the major climate features over our region is essential for both awareness as well as contributing in adaptive and mitigative measures to reduce the risk of climate vulnerability over India.